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Introduction
Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in

robotic navigation. An accurate, fast, and reliable SLAM algorithm has great potential in

many industries including robotics, security, and transportation. Despite the current

research focus has shifted to deep learning based approaches because of the rapid

advance in neural network architectures, traditional extended Kalman filter (EKF) based

SLAM algorithms are still valuable because they require less computational resources

than deep learning models to train, not to mention understanding the intuitions behind

these models will provide a solid foundation for learning more advanced models. In this

project, I implement an EKF prediction step based on SE(3) kinematics with IMU

measurements and an EKF update step based on the stereo-camera observation model

with feature observations to perform localization and mapping. Then I combine the IMU

prediction with the landmark update and implement an IMU update step based on the

stereo-camera observation model to obtain a complete visual-inertial SLAM algorithm.

I deploy the algorithm on an autonomous vehicle dataset to create a map of vehicle

trajectory and landmarks. The resulting algorithm could potentially be used in many

scenarios including robotic navigation, and autonomous mapping.

Problem Formulation
IMU Localization via EKF Prediction

Let be the vehicle pose at time t, given (the observation at time t), and𝑇
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(the control input at time t), the goal is to estimate the state of the vehicle using EKF,𝑇
𝑡

which assumes the prior pdf is Gaussian, which means:𝑝
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And The goal of the EKF Prediction process is to obtain the predicted mean andµ
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Discrete-time rotation kinematics.



Landmark Mapping via EKF Updates

Given the IMU pose , the new features observation , the𝑇
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goal is to estimate the coordinates of landmarks:

which generated the observations.

And the EKF updates step returns the updated mean and the updatedµ
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variance .Σ
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Visual-Inertial SLAM

Given a sequence of control inputs and a sequence of features observations ,𝑢
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𝑧
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the goal is to estimate the pose of the vehicle:

and the coordinates of landmarks:

over time 0, ……., T, using the prediction and updates steps mentioned above.

Technical Approach
IMU Localization via EKF Prediction

Given (the observation at time t), (the control input at time t), and the prior mean𝑧
𝑡

𝑢
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and covariance, the state of the vehicle estimated using EKF is given by:𝑇
𝑡

where the predicted mean and variance are:µ
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where W is the motion noise.



The implemented algorithm, predict(v, w, tau, uto, sto), intakes linear velocity v, angular

velocity w, time discretization tau, mean at time t (uto), and variance at time t (sto), and

it returns the predicted mean and the predicted variance calculated usingµ
𝑡 + 1 | 𝑡

Σ
𝑡 + 1 | 𝑡

the formulas above. This algorithm is enough for the IMU localization using EKF

prediction part of the project.

Landmark Mapping via EKF Updates

Given the IMU pose , new features observations , and the prior𝑇
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∈  𝑆𝐸(3) 𝑧
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mean and covariance, the coordinates of landmarks m (described above) can be

retrieved by estimating the mean and covariance of theµ
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 ∈  ℜ3𝑀 Σ
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landmarks, which are given by:

where

where Ks is the stereo calibration, oTi is the transformation from IMU frame to Optical

frame, and pi is the projection function.

The implemented algorithm, mapping_updates(K, T, fs, trajectory, t_v) intakes stereo

camera intrinsics K, transformation T from Optical to IMU, features observations fs, and

the trajectory of the vehicle, and it returns the updated coordinates of the landmarks m
in world frame. The transformation of landmarks from optical frame to world frame is

basically the same compared to the HW 2 Q2, except transformation iTo already takes

oRr into account so we can directly use it instead. The transformation was implemented

in otw(fs, Ks, b, uto, T) which intakes features observations fs, stereo intrinsics K,



baseline b, pose uto, and transformation iTo, and it returns the coordinates of landmark

in world frame.

Visual-Inertial SLAM

Given a sequence of control inputs and a sequence of features observations ,𝑢
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𝑧
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the pose of the vehicle:

can be estimated by a combination of the prediction steps:

and the updates steps:

where

and the coordinates of landmarks:

can be estimated by using the same formulas shown in the Landmark Mapping via EKF

Updates. The implemented algorithm, VIS(v, w, tau, K, iTo, fs, b), intakes linear velocity

v, angular velocity w, time discretization tau, stereo camera intrinsics K, transformation

iTo from Optical to IMU, features observations fs, and camera baseline b, and it returns

the estimated trajectory of the vehicle, and the landmarks locations in the world frame.



Once the algorithm has been implemented, I deployed it on two autonomous vehicle

dataset which contains 13289 features observed through 3026 discrete time intervals,

the results will be discussed in the results section.

Results
IMU Localization via EKF Prediction

The trajectory map generated by the EKF prediction are:

dataset 10, dataset 03

They seems to match the trajectory of the car in the provided video.

Landmark Mapping via EKF Updates

Using 1329 features (1 / 10 total features) for dataset 10 and 511 features (1 / 10 total

features) for dataset 3, the landmark mapping results are:



The landmarks positions in these maps seems to make sense based on the provided

video.

Visual-Inertial SLAM

Using 133 features (1 / 100 total features) and 1329 features (1 / 10 total features) for

dataset 10, the Visual-Inertial SLAM results are:

We can observe the number of features included affected the quality of the trajectory

estimated, and it seems the more features are included, the better the quality is, while

the longer it takes to run the algorithm. And for the 1329 features case I reduced the

observation noise, which made the estimated trajectory more similar to the prediction

only trajectory.

I also mapped the dataset 03 using 511 features, the result is:



Overall, the quality of these SLAM results are better than the prediction only trajectories,

which is expected. To improve the algorithm, one can adjust the observation and motion

noise (I used the noise suggested by the professor on piazza), I didn’t tune the noise

because it was time consuming to run the algorithm. One can also increase the number

of features, but it requires more computational resources to do so. Based on my

experience, it’s always important to find a balance between speed and accuracy. And

overall, the Visual Inertial SLAM algorithm seems to perform properly.


