
Particle Filter SLAM
Zhexu Li

Department of Electrical Computer Engineering
University of California, San Diego

San Diego, California, United States
zhl411@ucsd.edu

Abstract—In this project I Implement simultaneous localiza-
tion and mapping (SLAM) using odometry, 2-D LiDAR scans,
and stereo camera measurements from an autonomous car. Use
the odometry and LiDAR measurementsto localize the robot and
build a 2-D occupancy grid map of the environment.

Index Terms—Particle filter, SLAM, Map Texturing.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is one of
the fundamental problems in robotic navigation. An accurate,
fast, and reliable SLAM algorithm has great potential in
many industries including robotics, security, and transporta-
tion. Despite the current research focus has shifted to deep
learning based approaches because of the rapid advance in
neural network architectures, traditional particle filter based
SLAM algorithms are still valuable because they require
less computational resources than deep learning models to
train, not to mention understanding the intuitions behind these
models will provide a solid foundation for learning more
advanced models. In this project, I implement a particle
filter with a differential-drive motion model and scan-grid
correlation observation model for simultaneous localization
and occupancy-grid mapping. Then I implement a map tex-
turing algorithm to color the cells in the occupancy grid with
RGB values according to the projected points that belong
to the its plane. I deploy this algorithm on a autonomous
vehicle dataset to create occupancy grid mapping and textured
map. The resulting algorithm could potentially be used in
many scenarios including robotic navigation, and autonomous
mapping.

II. PROBLEM FORMULATION

A. Mapping

Given the robot trajectory x0:t and a sequence of observa-
tions z0:t, and the unknown occupancy grid m, the Occupancy
Grid Mapping problem can be described as:

p(m|z0:t, x0:t) =

n∏
i=1

p(mi|z0:t, x0:t) (1)

where mi = 1 or -1, with p(mi = 1) = p(mi = 1|z0:t, x0:t).
Given a matrix of pixels X ∈ ℜn×3, we are interested in

classifying every pixel x ∈ ℜ1×3 into a color category yi ∈
{1, 2, 3}, where 1 = red, 2 = green, 3 = blue, and return a
vector of predicted color labels y ∈ ℜn×1.

B. Particle Filter

A particle is a hypothesis that the value of x is µ with
probability a. Given a map m, a sequence of control inputs
u0:T−1, and a sequence of measurements z0:T , the localization
can be described as infering the robot state trajectory x0:T , and
the particle filter estimates

p(xt|z0:t, u0:t,m) (2)

of the robot state over a period of times.

C. Prediction

The purpose of prediction step is to obtain the prediction
pdf

pt+1|t(xt+1) (3)

using the motion model pf , and here I use the differential
drive motion model.

D. Update

The purpose of the update step is to obtain the updated pdf

pt+1|t+1(xt+1) (4)

using the observation model ph, and here I use the Laser
Correlation model.

E. Resampling

Resampling is required in case of Particle depletion, which
is a situation in which most of the updated particle weights
become close to zero because the finite number of particles is
not enough, which means the

ph(zt+1|uk
t+1|t) (5)

are too small at all k = 1,, N.

F. Map Texturing

Use the RGBD images from the largest-weight particle’s
pose to assign colors to the occupancy grid cells.

III. TECHNICAL APPROACH

I first implemented the Mapping algorithm based on the
formulas mentioned above. The implemented algorithm, map-
ping(wx, wy, theta, T, par, lir, ang) intakes the vehicle position
(wx = x, wy = y, theta = theta), transformation matrix T (
from lidar to body frame), map parameters par, and valid
Lidar scans points lir and angle, it returns the updated map
parameters. The algorithm basically transforms the input Lidar
points from the Lidar frame to the world frame, then use the
bresenham2D algorithm to obtain the occupied cells and free
cells that correspond to the lidar scan, and updates the map
log-odds according to these observations. Notice The input
lidar scans should be in desired range, I chose to filter lidar
points outside of the function because it’s easier to adjust.

Then, I implemented the particle filter prediction step. The
prediction(state, ti, vt, wt) intakes particle state (x, y, theta)
at time t, time interval ti, linear velocity vt and change of
yaw wt, it returns the new particle state (x, y, theta) at time
t + 1. Basically it uses the encoders and the FOG data to
estimate the robot trajectory via the differential drive motion
models f(x, y) mentioned in lecture 10 slide 20. The noise I
use for prediction step are: mean 0 and variance 0.0005 for
theta, mean 0 and variance 0.005 for x and y, because based
on my experiment these noise performed the best.

Then I implemented the particle filter updates step. The
update(state, weights, mp, lir, ang) intakes particle state (x, y,
theta) at time t + 1, particle weights at time t, map parameters
mp at time t, and new lidar points and angles lir, ang, it
returns updated particle weights at time t + 1 based on the
lidar input. The algorithm utilizes Laser correlation model
(mentioned above and in lecture 10 slide 20, 21, 22, 23) to
correct the robot pose. The particle poses remain unchanged
but the weights are scaled by the model. The dimension of
grid used for scan-grid corrlation is 9 x 9.

Once I have the updates step working, I implemented a re-
sampling step to prevent Particle Depletion problem mentioned
above. The resampling(particles, weights) intakes particle state
and particle weights, and returns resampled particle state and
weights. I used the Stratified resampling discussed in lecture
9 slide 34.

The map texturing algorithm can be approached by first,
extract the pose of the particle with the highest weight, then
calculate disparity and estimate depth using stereo images, and
project the RGB colors using the the left camera onto the
occupancy grid in order to color it.

There are some helper functions (plotting, etc) defined in
the helper function section in the Combined SLAM notebook,
see their discrptions for more information. All algorithms are
well documented in the notebook.

Once I had all these algorithms defined, I deployed it on the
autnomous vehicle dataset which contains 115865 Lidar scans
and 116048 encoder readings, I used 20 particles, resolution =
2, map dimension x = (-100, 1700), y = (-1700, 100), which
gives 900 x 900 grids map, max Lidar range = 80 based on the
Lidar specifications, and minimum Lidar range = 1. I ran the

algorithm until all the Lidar readings were used, and stopped
there because there is no point to continut mapping given there
is no more Lidar scans. The results will be discussed in the
results section.

IV. RESULTS

A. First Lidar Scan

The map generated by the first Lidar scan is displayed in
figure 1.

Fig. 1. The resulting map of the first lidar scans.

Notice the forward trajectory of the car is upwards in the
map. Valid Lidar range was set to 1 to 80 meters. The result
is hard to interpret but the lidar ray seems reasonable.

B. Prediction

The prediction result using all encoder and fog readings,
with one particle and no noise, is shown in figure 2.

The result makes sense and the trajectory basically matches
the movement of the autonomous car shown by stereo images.
The car kept going right before making several sharp right
turns and made several other turns.

C. Particle Filter SLAM

Using the parameters mentioned above, the resulting map
are shown in figure 3 and 4. Notice I stopped mapping when
the Lidar scans ran out, because there is no point to continue
mapping without Lidar readings. Again, the results make sense
and match the movement of the car shown in the stereo
images. The car first kept going right for a while, and made
a sharp right turn, and went straight for a while before turing
right again, and it kept going left for a while, and made a
sharp right turn again. I only stored the initial map and the
last map, because the intermediate plots were overwritten by

Fig. 2. Prediction result with one particle and no noise.

other plots in the jupyter notebook. But I did noticed the
car was stationary for about 5 minutes during encoder index
10000 to 31000, which might because of a long red light in
a busy intersection. Overall, the mapping results were quite
improssive and captured the movement of the car pretty well.

I also tried texturing the map and spent a lot of time trying
to make it work, but it was not working and the process was
too slow. I described the texture mapping problem and my
approach in some details above but the result was not ideal.

Fig. 3. The initial mapping, the car is on the bottom left of the plots.

Fig. 4. The initial trajectory, the car is on the bottom left of the plot, which
is a blue dot that’s hard to see

Fig. 5. The resulting map at the last Lidar reading.

Fig. 6. The resulting trajectory at the last Lidar reading, the later trajectory
are not plotted.

